POET Technologies Inc.

 

 

 

Sometimes you learn more from the comments than the article.

 

Intel Has No Plans For 10 Nanometer Chips

Jan. 15, 2017 6:30 AM ET
|
13 comments
|
About: Intel Corporation (INTC), Includes: MU, TSM
 
Stephen Breezy
Follow (1,334 followers)
Long/short equity, tech, chipmakers, alternative energy
 

Summary

Intel began transitioning from silicon more than a decade ago.

They initially planned to switch in 2015.

Micron owns the non-silicon technology and might not be sympathetic to Intel.

In August of 2014, Intel rolled out their Broadwell line of processors - the first to use the new 14 nanometer manufacturing process. I believe that Intel had planned for this to be the last node to use silicon technology. Why? Because they told us. In 2005, Intel (NASDAQ:INTC) announced that they had prioritized Indium Antimonide ("InSb" for short) as a leading contender to replace silicon in transistors. From the press release:

The results of this research reinforce our confidence in being able to continue to follow Moore's Law beyond 2015. As was the case with other Intel technical advancements, we expect these new materials will enhance the future of silicon-based semiconductors.

They expected silicon to run out of gas in 2015 and began the expensive process to replace it more than a decade earlier. An article at the MIT Technology Review publication explains the complexities well: InSb is not an easy material with which to work and certainly not a foregone conclusion. But there is a noteworthy advantage that was outlined:

Compound semiconductors also have optical properties that could help speed up communication between transistors on a chip and multiple chips within a device. These materials easily emit and detect light -- a characteristic that has been studied and improved for decades, says David Hodges, electrical engineer at the University of California, Berkeley. Therefore, he says, light emitters and detectors made of compound materials could potentially replace copper wires, which are a major "impediment of speed."

 

The clues start to line up like Scooby Snacks at this point because we also know that Intel expected to release their silicon photonics ("optical") in 2015 as well. While they did technically release standalone optical products for "select customers" some months ago, they've delayed the CPU-integrated Purley product for some years.

The difference is huge: current optical technology must be produced on a separate chip because the optical manufacturing process is incompatible with the CPU manufacturing processes. Since that separate chip is typically connected to the CPU by way of a slow electrical bus, the performance advantages are compromised.

All of that high-performance stuff at the other side of the fiber optic cable is now rendered much lower in performance by a slow, electrical chip-to-chip interface between the standalone CPU and photonics chip. This problem is illustrated by the 3D XPoint / Optane NVMe performance compromises. If Intel had an on-CPU optical link to Optane (or any high-performance memory like DRAM), performance would be orders of magnitude better.

Optical is the future. But so is tin foil.

During the optical announcement, Intel bragged that this had been in development for 16 years - surely a competitive advantage. But what were they working on in the year 2000? It just so happens that they were working on chalcogenides with Energy Conversion Devices ("ECD"), a company founded by inventor Stanford Ovshinsky:

Optic Switch
Intel Corporation
US Patent 6,687,427
December 29th, 2000

Chalcogenide materials are used in memory devices for their phase change property, i.e., a property that can be switched between a generally amorphous and a generally crystalline state by the application of thermal energy. The phase change can be exploited in controlling current flow. A further benefit is that such phase change is reversible.

In addition to undergoing a phase change (amorphous/crystalline) in the presence of sufficient thermal or heat energy, it is also observed that chalcogenide materials undergo a significant change in their index of refraction in changing, for example, from a generally amorphous to a generally crystalline state, i.e., in response to a temperature change. The change in index of refraction between an amorphous chalcogenide material and a crystalline chalcogenide material is on the order of 3 to 20 times. This is comparable to an index of refraction change to thermal energy exposure on the order of about a fifth decimal (10−5) for silicon dioxide.

 

It is important to note that chalcogenides (warning: audio link) are also useful in emitting and detecting light. And we know that Micron's (NASDAQ:MU) Guy Blalock disclosed that they're using chalcogenide technology in 3D XPoint. What else do we know?

What do I believe?

I believe that, after ECD developed chalcogenide transistors in 2003, they quietly went into licensing or sale negotiations with Intel. This is why the patents and trademarks were filed in 2003 while the technology wasn't disclosed for another three years. Ultimately, Intel bluffed with their InSb transistors and this prompted ECD to call that bluff by finally announcing their technology.

But then they forced Stan out of the company (he never retired) and transferred the patents to Ovonyx which was subsequently traded to Micron for some Olive Garden gift cards. I believe that this Ovonyx transaction was coordinated by Intel (please note that Numonyx should not be confused with Ovonyx but you should read into the similarity) while Micron remained in the dark. Now that Micron realizes what they have, I think that they're playing hardball. Good for them and their shareholders.

 

Conclusion

Intel's normal "tick-tock" cadence was not just interrupted - it has been destroyed. While TSMC (NYSE:TSM) and others prep their 10 nanometer products for imminent shipment, we know now that Intel's Coffee Lake product is still going to be produced at 14 nanometers when it ships in 2018. Tick-tock is now tick-tock-tock-tock with Broadwell, Skylake, Kaby Lake and now Coffee Lake all being produced at 14 nanometers over four years - an eternity in semiconducting.

There's a fly in the ointment over at Intel. And, until they sort it out, they need to make 3D XPoint appear to be worthless garbage. Nevermind the man behind the curtain. Once it is finally sorted, Intel can finish Fab 42 with the original goal of chalcogenide transistors and photonics. Because of the advantages, they'll probably be able to use cheap 22 or 28 nanometer equipment and still put the competition out of business. Operating speeds will be in the hundreds of gigahertz or higher. If you own AMD (NYSE:AMD), TSMC, Samsung (OTC:SSNLF), NVIDIA (NASDAQ:NVDA), Qualcomm (NASDAQ:QCOM), Xilinx (NASDAQ:XLNX), ARM (OTCPK:SFTBF) or the like, consider yourself warned. I'm not making any of this up - just speculating on the possible outcome.

The advent of manufacturable nanoscale chalcogenide technology has Earth-shaking implications on half a trillion dollars across various markets annually. Intel and Micron are on the hook for confirming that it is manufacturable. Micron is either in bed with Intel on this deal or they are quite the opposite. There is no middle ground here. I honestly don't know their disposition but I think that it'd be better for shareholders if they remained independent so that they can realize the true value of this technology (no matter how they fell into it).

What I do know is that change is coming in a big way. CPU-integrated photonics will transform computing dramatically (with Broadcom (NASDAQ:AVGO) sitting pretty on the SerDes patents that will be required for all of it). This includes the pesky low-performance interface that currently separates Optane from high-performance. Both PCIe/NVMe 4.0 and 5G cellular are very much delayed. I believe that photonics will become a big part of both standards once Intel sorts out their intellectual property with Micron and the ECD bankruptcy.

 

Then we'll be able to see Optane's true colors as photonic far memory.

Disclosure:I am/we are long INTC, MU, ENERQ.

I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Follow this author and get email alerts
Follow Stephen Breezy
 
 
 
 

About this article:

Expand

Recommended for you:

  • Intel: A Bigger Positive Emerges
    Paulo Santos Jan. 5, 2017 11:21 AM ET
  •  
  • AMD - The Next Chip Giant?
    The Value Portfolio Jan. 5, 2017 5:41 PM ET
  • Intel Secret Revealed In Apple's MacBook Pro
    Stephen Breezy Nov. 23, 2016 1:30 PM ET
  • Intel And Micron: Chip Trade Wars?
    Electric Phred Jan. 9, 2017 5:57 PM ET

Comments (13)

 
 
What do we think about AVGO? Would love to see intel bounce in a major wayz
15 Jan 2017, 06:45 AM Report Abuse Reply 0 Like
Brian Krzanich did reveal a laptop with a 10nm Cannonlake CPU at CES. This chip is expected to ship in the second half of 2017.
15 Jan 2017, 07:00 AM Report Abuse Reply 1 Like
Just like 14nm Core-M in 2014. Just paperlaunch.
15 Jan 2017, 07:50 AM Report Abuse Reply 1 Like
Heady stuff. World shaking. So, why doesn't anyone else know this? And, there is or isn't a 10nm from Intel?
15 Jan 2017, 07:19 AM Report Abuse Reply 3 Like
You're reading too much science fiction, dear author. Do you really think that Intel develops a completely new technology (on-die photonics) secretly and quietly, and it will release it with a big bang, crushing the competition? That's naive, whishfull thinking. Something like this never happened in the history of the semiconductor industry, despite many claims made by various companies at different points in time. Not even Intel can buy the best physicists, material science engineers, technologist on the planet, lock them in a place, make sure they don't communicate with the outer communities and let them work on a project that will succeed 100% . This is not the atomic bomb, and we're not in times of war. We live in an era of freedom, the researchers have to communicate and exchange ideas, and we would have seen more proof that something big is happening before it hits the market. Look at X-Point - is far from being market ready, and it's far from being the revolution Intel claimed will be. Sadly, all your other negative points are correct - Intel loosing silicon process leadership, unused, unfinished fabs, mass layoffs, delayed products, missing innovation ..
15 Jan 2017, 07:23 AM Report Abuse Reply 6 Like
Alas, so much 'fearsome' richness in your article, but to the average journeyman like me, I am tempted to say, 'let the light lead'.

 

So much at stake for INTC, with the likes of NVDA and AMD seemingly changing the entire Moore's Law paradigm, but if it is 'light' that changes the waves, including wavelengths, let it happen.
15 Jan 2017, 08:51 AM Report Abuse Reply 0 Like
Mr. McGuire: I want to say one word to you. Just one word.
Benjamin: Yes, sir.
Mr. McGuire: Are you listening?
Benjamin: Yes, I am.
Mr. McGuire: Chalcogenide.
Benjamin: Exactly how do you mean?
Mr. McGuire: There's a great future in chalcogenide. Think about it. Will you think about it?

 

Long: INTC
15 Jan 2017, 09:10 AM Report Abuse Reply 1 Like
SB-I have asked you many times: If this is, in fact, "Earth-shaking", why would Intc and/or Micron not be running to the Detroit courthouse with checkbook in hand to settle the ECD bankruptcy case?
15 Jan 2017, 09:14 AM Report Abuse Reply 1 Like
If this is such great tech why did INTC trade it away to MU for some "olive Garden gift cards", only to put themselves is a hard position of trying to get it back once Micron realized its true multitrillion dollar value. You make no sense and this is getting kind of old........
15 Jan 2017, 09:52 AM Report Abuse Reply 0 Like
Anyone familiar with CYBE?
15 Jan 2017, 10:03 AM Report Abuse Reply 0 Like
eh..
15 Jan 2017, 10:20 AM Report Abuse Reply 0 Like
Where do I start?
This article is filled with information that is hearsay, nonsense, and incorrect conclusions.
There are technical articles and patents that show the use of three-five semiconductors bonded to silicon chips by Intel.
This is the route Intel is taking to improve the performance of large server farms - and the have said so.
Intel has not only announced 10 nm plans they are testing them right now.
Oh yes ..... you can't get a patent without disclosing enough information for someone skilled in the art to be able to make whatever is being patented. The thesis doesn't hold water.
I think I have drilled enough holes in your article for all the water to drip out.
15 Jan 2017, 10:39 AM Report Abuse Reply 1 Like

 

 

Please login to post a reply
Morning Star
City
Rank
Treasurer
Activity Points
3127
Rating
Your Rating
Date Joined
07/04/2013
Social Links
Private Message
POET Technologies Inc.
Symbol
PTK
Exchange
TSX-V
Shares
259,333,852
Industry
Technology & Medical
Create a Post